Startseite » Themen » Energieeffizienz »

Batteriewechsel überflüssig

Energieeffizienz
Batteriewechsel überflüssig

Als Energy Harvesting wird das Erzeugen von Strom aus Quellen wie Umgebungstemperatur, Vibrationen oder Luftströmungen bezeichnet. Für einen Leistungsbedarf im mW-Bereich sind die piezobasierten Lösungen dann interessant, wenn eine Stromversorgung über Kabel nicht möglich ist und man auf Batterien verzichten will.

Energy Harvesting kann auf unterschiedlichen physikalischen Effekten beruhen. Solarzellen kommen ebenso in Frage wie thermoelektrische Generatoren, die aus Temperaturunterschieden elektrische Energie gewinnen. Über Antennen kann außerdem auch die Energie von Radiowellen aufgefangen und energetisch verwendet werden. Ein Beispiel dafür sind passive RFID-Tags. Piezoelektrische Kristalle lassen sich ebenfalls sehr gut für ein Energy Harvesting einsetzen. Sie erzeugen bei Krafteinwirkung durch Druck oder Vibration elektrische Spannung, nutzen also in der Umgebung vorhandene Bewegungsenergie. Durch mechanische Verformung eines Piezokristalls infolge einer Krafteinwirkung durch Zug oder Druck werden Ladungen generiert, die an den Elektroden des Piezoelements als elektrische Spannung messbar sind. Dieses Phänomen wird als direkter piezoelektrischer Effekt bezeichnet. Es lässt sich sehr schnell erkennen, dass die generierten Ladungsmengen relativ gering sind. Dieser Aspekt stellt hohe Anforderungen an Mechanik und Elektronik, um ein Maximum an Energie „ernten“ zu können.

Aufgrund der je nach Applikation verschiedenen energetischen Anregungsbedingungen gibt es jedoch leider keine universelle Energy Harvesting Lösung. Um ein solches System richtig zu dimensionieren, muss man immer alle entscheidenden Randbedingungen kennen und berücksichtigen. Zum einen betrifft dies die Energiequelle: Hier ist zwischen kontinuierlichen und stoßweisen Bewegungen zu unterscheiden. Zum anderen müssen natürlich auch die Anforderungen des elektrischen Verbrauchers berücksichtigt werden: Zu den wichtigen Parametern gehören hier die benötigte Spannung, die Leistung und die Eingangsbeschaltung, also kapazitiv oder ohmsch. Auf Basis dieser Daten ist dann ein Design und Dimensionierung des Wandlers einschließlich Mechanik möglich. In diesem Zusammenhang kann das Karlsruher Unternehmen PI Ceramic Erfahrung und Know-how bei der Erarbeitung kundenspezifischer Lösungen einbringen, wovon sehr unterschiedliche Branchen profitieren.
Anwendungen, bei denen die durch Energy Harvesting aus der Umgebung gewonnene Energiemengen ausreichen und sinnvoll genutzt werden können, gibt es viele. Zwar haben kleine Knopfbatterien heute durchaus lange Laufleistungen: Es kann aber dennoch sinnvoll sein, auf Batterien zu verzichten, weil Prüfung und Austausch zu aufwendig sind, wenn die Verbraucher unzugänglich montiert oder schwer erreichbar sind. Dann können Energy Harvesting Lösungen trotz ihrer Komplexität das Mittel der Wahl sein. Ein typisches Beispiel hierfür ist das so genannte Health Monitoring an den Flügeln von Windrädern.
Weitere für Energy Harvesting interessante Bereiche sind Datenmonitoring und -übertragung in der Heizungs- und Klimatechnik. Nutzt man Fahrzeugvibrationen zur Energieerzeugung, lassen sich Produkte während des Transports lückenlos überwachen, ohne dass die entsprechende Sensorik verkabelt oder mit Batterien ausgestattet sein muss. Das ist beispielsweise sinnvoll, wenn in geschlossenen Behältern Temperaturen erfasst werden sollen. In der Frontscheibe von Kraftfahrzeugen können Regensensoren per Energy Harvesting versorgt werden und auch der Energie-Bedarf drahtloser Zigbee-Netze lässt sich in vielen Fällen decken, wenn man in der Umgebung Energie „erntet“.
Prinzipiell kann man jede piezokeramische Komponente oder jeden Piezoaktor als Energy Harvester einsetzen. Durch die Umwandlung mechanischer Schwingungen von einigen Kilohertz in elektrische Spannung lassen sich Leistungen im Milliwatt-Bereich erzeugen, mit denen man elektrische Bauteile versorgen kann, z.B. Prozessoren, Sensoren oder Minisender. Eine besonders praxisgerechte Lösung ist der robuste, einlaminierte DuraAct-Transducer. PI Ceramic bietet hier eine Vielzahl von Standardbauformen an.
Die DuraAct-Flächenwandler bestehen aus Piezokeramikplatten- oder Folien, die inklusive Kontaktierung in einem Polymer eingebettet sind. Dadurch wird die an sich spröde Keramik mechanisch vorgespannt und gleichzeitig elektrisch isoliert. Die mechanische Vorspannung erweitert die Grenzen der Belastbarkeit der Keramik, somit ist z.B. auch eine Applikation auf gekrümmte Flächen möglich. Gleichzeitig vereinfacht der kompakte Aufbau einschließlich der Isolierung die Handhabung für den Anwender, es besteht sogar die Möglichkeit, den Flächenwandler in einen Verbundwerkstoff einzubetten. Im Idealfall sind die Flächenwandler symmetrisch aufgebaut, d.h. bei Verbiegung des Wandlers entstehen auf beiden Elektrodenflächen gleiche Ladungsmengen mit entgegengesetztem Vorzeichen, man würde keine Potenzialdifferenz messen können. Aus diesem Grund ist es erforderlich, den Wandler auf ein Substrat (z.B. Aluminium, CFK- oder GFK-Material) zu kleben. Man erhält somit eine klassische Biegerstruktur. Bei fester Randeinspannung und bei Auslenkung des Biegers können nun Ladungen generiert werden, die in erster Näherung proportional zu den in die Keramik eingebrachten Spannungen oder Dehnungen sind. Ein Test gibt Aufschluss darüber, welche Keramikdicke welche Voraussetzungen fürs Energy-Harvesting bietet. Dazu wurden die DuraAct-Wandler auf CFK-Streifen geklebt und einseitig eingespannt. Eine rotierende Exzenterscheibe lenkt den Biegewandler aus. Mit dem vorliegenden Aufbau konnten somit die für den direkten Wandlervergleich notwendigen reproduzierbaren Einspann- und Anregungsbedingungen (Variation von Frequenz und Auslenkung) realisiert werden. Sind Piezowandler, Mechanik und Elektronik unter Berücksichtigung der applikationsspezifischen Randbedingungen aufeinander abgestimmt, kann das auch in vielen anderen Applikationen eine praxisgerechte Energieversorgung sein.
Birgit Schulze, Ellen Christine Reiff Physik Instrumente, Karlsruhe,Redaktionsbüro Stutensee, Stutensee

PI Ceramic
PI Ceramic, ein Tochterunternehmen von PI (Physik Instrumente in Karlsruhe) mit Sitz im Thüringischen Lederhose, ist nach eigenen Angaben eines der führenden Unternehmen auf dem Gebiet aktorischer und sensorischer Piezoprodukte. Derzeit beschäftigt PI Ceramic über 150 Mitarbeiter, darunter allein 30 Ingenieure, in der Piezoforschung, -entwicklung und -herstellung. Breitgefächertes Know-how im komplexen Entwicklungs- und Herstellungsprozess funktionskeramischer Bauelemente sichern Qualität. Das Unternehmen liefert seine Lösungen für alle wichtigen High-Tech-Märkte angefangen von der Industrieautomation und Halbleiterindustrie über Medizintechnik, Maschinenbau und Feinwerktechnik bis hin zu Luft- und Raumfahrt sowie dem Automobilbereich.
Industrieanzeiger
Titelbild Industrieanzeiger 6
Ausgabe
6.2024
LESEN
ABO
Newsletter

Jetzt unseren Newsletter abonnieren

Webinare & Webcasts

Technisches Wissen aus erster Hand

Whitepaper

Aktuelle Whitepaper aus der Industrie

Unsere Partner

Starke Zeitschrift – starke Partner


Industrie.de Infoservice
Vielen Dank für Ihre Bestellung!
Sie erhalten in Kürze eine Bestätigung per E-Mail.
Von Ihnen ausgesucht:
Weitere Informationen gewünscht?
Einfach neue Dokumente auswählen
und zuletzt Adresse eingeben.
Wie funktioniert der Industrie.de Infoservice?
Zur Hilfeseite »
Ihre Adresse:














Die Konradin Verlag Robert Kohlhammer GmbH erhebt, verarbeitet und nutzt die Daten, die der Nutzer bei der Registrierung zum Industrie.de Infoservice freiwillig zur Verfügung stellt, zum Zwecke der Erfüllung dieses Nutzungsverhältnisses. Der Nutzer erhält damit Zugang zu den Dokumenten des Industrie.de Infoservice.
AGB
datenschutz-online@konradin.de